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Abstract

In this paper a new method for constructing Clifford algebra-valued orthogonal polynomials in Euclidean
space is presented. In earlier research, only scalar-valued weight functions were involved. Now the class of
weight functions is enlarged with Clifford algebra-valued functions.

The method consists intransforming the orthogonality relation on the Euclidean space into an orthogonality
relation on the real axis by means of the so-called Clifford—Heaviside functions. Consequently appropriate
orthogonal polynomials on the real axis yield Clifford algebra-valued orthogonal polynomials in Euclidean
space.

Three specific examples of such orthogonal polynomials in Euclidean space are discussed, viz. the gen-
eralized Clifford—Hermite, the Clifford—Laguerre and the half-range Clifford—Hermite polynomials.
Published by Elsevier Inc.
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1. Introduction

In a series of papefd—6,8,9] higher-dimensional wavelets and their corresponding continuous
wavelet transforms have been studied within the framework of Clifford analysis. Clifford analysis,
centred around the notion of monogenic function, may be regarded as a direct and elegant gen-

* Corresponding author.
E-mail addressesh@cage.ugent.bg. Brackx),nds@cage.ugent.lfdl. De Schepperfs@cage.ugent.be
(F. Sommen).

0021-9045/$ - see front matter Published by Elsevier Inc.
doi:10.1016/j.jat.2005.08.004


http://www.elsevier.com/locate/jat
mailto:fb@cage.ugent.be
mailto:nds@cage.ugent.be
mailto:fs@cage.ugent.be

F. Brackx et al. / Journal of Approximation Theory 137 (2005) 108—122 109

eralization to higher dimension of the theory of holomorphic functions in the complex plane. An
essential step in the construction of those Clifford-wavelets is the introduction of specific poly-
nomials satisfying orthogonality relations with respect to scalar-valued weight functions. These
polynomials originate as a result of a particular Clifford analysis technique, the so-called Cauchy—
Kowalewskaia extension of a real-analytic functiori#fi to a monogenic function ii®"+*. The
Clifford—Hermite, Clifford—Gegenbauer and Clifford—Laguerre polynomials constructed this way,
all give rise to wavelets ifR” since they all satisfy the necessary admissibility condition. The
respective orthogonality relations lead to a number of vanishing moments, an important feature
in wavelet theory. For an account of the continuous wavelet transform in Clifford analysis and
an overview of the generalized orthogonal polynomials and their corresponding wavelets thus far
obtained, we refer the reader[@d.

In our quest for new Clifford wavelets we came across a simple but highly efficient method
for constructing Clifford algebra-valued orthogonal polynomials in Euclidean space. It should be
emphasized that the class of weight functions, which up to now always were scalar-valued, is now
enlarged with Clifford algebra-valued real-analytic functions. Unfortunately the newly obtained
orthogonal polynomials fail to satisfy the necessary admissibility condition in order to make them
candidates for a mother wavelet. However both the method and the higher-dimensional orthogonal
polynomials it generates, have a value of their own.

In order to make the paper self-contained, a section on definitions and basic properties of
Clifford algebra and Clifford analysis is included (see Section 2).

In Section 3 our methodology is presented. It consists, roughly speaking, of transforming the
orthogonality relation on the Euclidean space into an orthogonality relation on the real axis.
Crucial to this transformation are the so-called Clifford—Heaviside functions; they generalize to
higher dimension the Heaviside step-function on the real axis and are a typical feature of Clifford
analysis. Apparently our construction method is simple, but nevertheless it should be emphasized
that this is entirely due to the power of Clifford analysis and the existence of these idempotent
Clifford—Heaviside functions, inexisting in complex or harmonic analysis.

The method is then applied to three specific cases; in each of the cases known orthogonal
polynomials on the intervgl— oo, +o0o[ or [0, +oo[ lead to orthogonal Clifford algebra-valued
polynomials in Euclidean space. The obtained Clifford—Laguerre (see Section 5) and half-range
Clifford—Hermite polynomials (see Section 6) are entirely new; the generalized Clifford—Hermite
polynomials (see Section 4) coincide, up to constants, with the radial Clifford—Hermite polyno-
mials, already introduced in [19] by means of the Cauchy—Kowalewskaia extension. A number
of those higher-dimensional orthogonal polynomials is explicitly calculated and in each case an
explicit recurrence relation is established.

2. Clifford algebra and Clifford analysis

Clifford analysis (see e.g. [2,12]) offers a function theory which is a higher-dimensional ana-
logue of the theory of the holomorphic functions of one complex variable. The functions consid-
ered are defined iIR” (m > 1) and take their values in the Clifford algelitg, or its complexifi-
cationC,,. If (e1, .. ., ey) is an orthonormal basis &, then a basis for the Clifford algebfg,
is given by(es : A C {1, ..., m}) whereey = 1 is the identity element. The non-commutative
multiplication in the Clifford algebra is governed by the rules:

t=-1, j=1...m,

ejek—i—eke}:O, jZEk, jk=1...,m.
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Conjugation is defined as the anti-involution for which
Ej=—ej, j=1,...,m,

with the additional rulé = —i in the case of,,.
Fork =0,1, ..., mfixed, we call

Cfn = { Z apeép; dp € C}
#A=k

the subspace df-vectors, i.e. the space spanned by the produdtgliferent basis vectors.
The Euclidean spac®” is embedded in the Clifford algebrd%, and C,, by identifying
(x1, - .., xy) with the vector variable given by

m
X = E ejxj.
j=1

The product of two vectors splits up into a scalar part and a 2-vector, also called bivector, part:

j=1
and
m m
XNy = Z Z ejer(Xjyk — Xkyj)-
j=lk=j+1
In particular
2% = —(x,x) = —lx”.

The Spin-group
Spinm) = {s = w;...0y: ;€ S" 1 j=1,....2, teN}
whereS”~1 denotes the unit sphere i&", is a two-fold covering group of the rotation group
SQm). For T € SQ(m), there exists € Spinm) such that? (x) = sxs5 = (—s)x(—%), for all

x € R™.
In the sequel, the so-called Clifford—Heaviside functions

1 X 1 X
Pr=Z(1+i=), P =Z(1-i=
2( +’m) 2( l|»_c|>

will play an important r6le; they were introduced independently by Somiih&rand Mcintosh
[16].
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Introducing spherical co-ordinates RY’ by
x=ro, r=lx|€[0 +oo, weSs"T
the Clifford—Heaviside functions can be rewritten as
P+=%(1—|—ig), P~ =%(1—@).
They satisfy the relations
P4+ P =1, PP =P PT=0, (PH)?°=P", (P)°=P".
Furthermore, we have
iw P* =+ P* andhencex P* =+ r P*.

The central notion in Clifford analysis is the notion of monogenicity, the higher-
dimensional analogue of holomorphicity.

An R,,- or C,-valued functionF(xy, ..., x,;) is called left monogenic in an open region of
R™, if in that region:

0,F =0.

Hered, is the Dirac operator ifR"™

m
0 =D 0,
=1

a vector elliptic differential operator of the first-order splitting the LaplaciaR’f

Ay = =02

The notion of right monogenicity is defined in a similar way by letting act the Dirac operator from
the right.

Let Q c R™ be open, leC be a compact orientabla-dimensional manifold with boundary
¢C and define the orienteld,, -valued surface elemedt, on dC by

doy = Zm:(—l)jej dx;,
j=1
where
dxj =dxg A AfAXGTA - AdXy, j=1,2,...,m.
If n(x) stands for the outward pointing unit normaka& 0C, then
doy = n(x) dX(x),

dZ(x) being the Lebesgue surface measure.
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Suppose that € C1(Q) is right monogenic irf). Then Cauchy’s Theorem states that for each
C CQ,

/ fx)day =0.
oc

An important particular example occurs in the following case: tike: 1 andC = B(1) =

{x € R™; |x| <1}, the closed unit ball ifR”. ThendC = $”~1 and at each poinb € "1,

n(w) = w, whencedo,, = » dS(w) with dS(w) the Lebesgue measure st—L,
Consequently, we have

/ wdSw)=0
m—1

confirming the fact thatb is a spherical harmonic.
The above result will be of crucial importance in our general method for constructing Clifford
algebra-valued orthogonal polynomials in Euclidean space.

3. The general construction method

Inthis section we expose our methodology for constructing Clifford algebra-valued polynomials
of the form

n
pn(ix) = Zak(i)_c)k, ar,e€C, k=0,1,2,...,n

which are orthogonal on the Euclidean sp&ewith respect to a Clifford algebra-valued weight
function. Note that the polynomials considered take their valué:ﬁ,ir@ (E,ln, i.e. ascalar plus a
vector, also called paravector.

Definition. If W(r) = Z rf (b; € C, j e NU{0}) is real-analytic in the neighbourhood
of the originr = 0, then one deflneW(zg) = ijo b; (ix)/ .

Proposition. If W(r) is real-analytic in] — p, p [ then in§(0, p) = {x € R™; |x|] < p} one has:
(i) W(ix) is real-analytic in the variablegx, ..., x,),

(i) Wix)P*t =P*W(ix)=W(r)PT,

@iy Wix)P~ =P W(ix) = W(—r)P~,

(iv) W(ix) = W@E)PT +W(—r)P~ .

Proof.
(i) Straightforward.
(i) Applying the properties ofP ™, we have successively

W(ix)PT = Zb (ix)! P = Zb (ix)! (P1)] = Zb (rPt) = Zb i pt

and thus

W(ix)Pt = W()P™.
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Moreover
W(ix)PT = PTW(ix).

(iii) Similar to (ii).
(iv) The formulae in (ii) and (iii) lead to

W(ix) = W(ix)Pt + W(ix)P~
=W@r) P+ W(=r)P,

where we have used the facttiat + P~ =1. O

Inwhat follows we will show how, by means of the above properties, integrals over the Euclidean
spaceR™ can be rewritten in terms of integrals over the real axis. Consequently, constructing
Clifford algebra-valued polynomialg, (ix)}, >0 which are orthogonal of®” will be reduced
to constructing orthogonal polynomials on the real axis.

Two types of Clifford algebra-valued orthogonal polynomialsdR¥hwill be distinguished:

3.1. Type 1: orthogonality oR™ with respect to the weight functioi (ix)
First we search for Clifford algebra-valued polynomighs (ix)}, > o which are orthogonal on

R™ with respect to a Clifford algebra-valued weight functiétiix), thus satisfying the orthog-
onality relation

<Pn (ix), Pw(l&)) = / - Pn (X)W (ix) py (ix) dV (x) = 0,

whenevemn # n'. HeredV (x) stands for the Lebesgue measurefh
Using the fact thaP* + P~ = 1, we have

(pn (ix), Pn’(i)_c)> = / PO W (ix) py (ix) PT dV (x)
Rm
+ / Pn (@)W (ix) py (ix) P~ dV (x). 1)
Rm
As the polynomialg p, (ix)}, > o satisfy

pu(@)Pt = p,(r)PT pu(ix)P™ = py(—r)P~

and taking into account that (see Sect&)n

[ 0 dS() =0,
S

m-1"_

expression (1) can be simplified to:
(pn (i£)7 Pn' (U_C))
= /Rm Pu W () pur(r) PTdV (x) + /Rm Pu(=1)YW (=) pp (—=r)P~dV (x)

+o00
:/ ﬁn(r)W(r)Pn/(r)rm_ldr/ }(1+@)d3@)
0 sm—1 2
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+00
+/ ﬁn(—r)W(—r)Pn'(—r)rm_ldr/ %(1—@) dS(w)
0

sm—1

A Foo
== ( / Pa(YW () py ()"t dr
2 \Jo
+00
+ / ﬁ,,(—r)W<—r>pnf(—r)r'"—1dr)
0
Am

+o0 0
=7(f0 D (YW () prr () 7" dr+ / ﬁ,,(u)W(u>m(u>|u|’“du)

Am +OO— -1
= 7/ Pu (W@ |r|™ " pu (r)dr.

HereA,, denotes the area of the unit sph&fe 1 in R”.

So we may conclude that the polynomils, (ix)}, >0 are orthogonal o™ with respect to
W (ix) if and only if the polynomialg p, (r)}, >0 are orthogonal ofi—oo, +oo[ with respect to
the weight functionW (r)|r|"~1. Hereby it is tacitly assumed that the weight functidfigr)
andW (ix) are real-analytic in, respectively— co, +oo[ andR™ and that moreover all integrals
involved are convergent.

Note that in the special case where the dimensigsodd, the polynomialgp,, (r)}, >0 should
be orthogonal ol — oo, 4+o0[ with respect to the weight functioi (r)r” 1 .

3.2. Type 2: orthogonality oR™ with respect to the weight functidii (ix) P™

Now we consider the construction of Clifford algebra-valued polynonija|ix)}, > o which
satisfy the orthogonality relation

<pn(i£), pn/(ii)> = / D (i)W (ix)P* py(ix)dV(x) =0,
RW!

wheneven # n’; thus we search for orthogonal polynomigjs, (ix)}, >0 in R with respect to
a Clifford algebra-valued weight function of the fofi(ix) P+ = W(r)P™.
By introducing spherical co-ordinates we obtain:

(Pn(i)_C), P (i£)> = /[RE’” PuMW @) py () PTdV (x)

“+00
= f Pu (MW () p (ryr™ L dr /
0

Sm

}(l+@) dS(w)
12

Am +oo_ 3
== /0 . (OWEr™ p, (r) dr.

Consequently, the polynomial$p, (ix)},>0 are orthogonal onR™ with respect to
W (ix) P if and only if the polynomialg p,(r)}, >0 are orthogonal o0, +oo[ with respect
to the weight functior (r)r™ 1.

Note that when considering iR” the weight functionW (ix) P~ = W(—r)P~, one has in a
similar way as above

Am 1 [° _
(pn(i)i),pnf(@)) =S (=1 ! / P (OW )™ py (r) dr.
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In this case we thus need polynomigis ()}, > o which are orthogonal oh— oo, 0] with respect
to the weight functior (r)r™ -1

4. The generalized Clifford—Hermite polynomials

In this section we focus on Clifford algebra-valued orthogonal polynomidi'imvith respect
to the specific weight functio (ix) = exp(—|ix|%) = exp(—|x|?). Hereby we will follow the
general theory of SectioB.1.

The construction is based on the monic generalized Hermite polynomﬁéflec) orthogonal
on] — oo, +o0o[ with respect tdx|” exp(—x2); y > —1 (see e.g. [10,13,20]).

These polynomialsK,EV) (x) satisfy the recurrence relation

K,(lﬂzl(x) —xK( )(x)—anK( )1(x) n=0,

Km =0 K@ =1 2)
with

~ |3 if nis even,

L if s odd.
Furthermore, they can be expressed in terms of the generalized Laguerre polynomials on the real
line:

K(}')(x) — (_1)" }’l' Li(ly/z_l/Z)(xz),

7/2+41/2
K 00 = (=" nlx LYZ2 (2,
These generalized Laguerre polynomiﬁﬁg) (x), foro > —1, are orthogonal polynomials asso-
ciated with the intervalO, +oo[ and the weight function* exp(—x).

From their explicit expression (see for e[$5])

e Z( o (n ’ Z) k!’ ®3)
k=0 !
we obtain
K3 ()= (- 1)",1;];)( 1)k(n+i; %)Xk—zf
Kg;;)ﬂ(x) =n! an:ZO(_l)nJrk (” ‘; Li-lic- %>le:+1

The generalized Hermite ponnomia{IK,(,m_l)(x)}@o are orthogonal on — co, +o0[ with
respect to exp—x2)|x|" 1. According to SectioB.1, these polynomials are the desired building
blocks for the Clifford algebra-valued polynomidl&, (ix)}, >0, which are orthogonal of®™
with respect to exp—|x|?). We will call these polynomials the generalized Clifford—Hermite
polynomials.
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Converting the above results for the generalized Hermite polynomials to the Clifford analysis
setting according to the general construction method of SeBtiwa obtain the recurrence relation

Kpt1(ix) = ix K, (ix) — G K,_1(Gix), n=0,
K_1(ix) =0, Ko(ix) =1,
where now

~ z if nis even,
an = l%—&-m—l ; ;
7= if nis odd.

The connection with the classical generalized Laguerre polynomials is given by

Ko, (ix) = (—1)" n! LY*7 P (1x)?),
Konia(ix) = (=1 nlix LI (1x/?)

and we have the explicit expression

- m_ - N2k
Kzn(i£)=(—1)"n!2(—l)k<n+2 1)(@ |

_ |
P n—=k k!

)2k+l

n mN s
) — gtk (T +37 (ix
Kon1(ix) = n! k§_0( 1) (n " ) e

The first generalized Clifford—Hermite polynomials are given by

Kolix) =1,
Ki(ix) = ix,
Ka(ix) = (ix)? — ("—2’)

=1xf? - (%)

Ka(ix) = (ix)® (’" . 2):‘&

2
=ilx[%x — (m ;r )zz,

Ka(ix) = ()" = (m +2)(i)* + ( 2 )
=x*— m+2)x>+ (m_+2><

Ks(ix) = (i0)° — (m + 4)(ix)® + (’”_+4>

4 2
— ilxlfx — iGm + ) xx + (ﬂ) (%)(zv_c),
etc.

Note thatK 2, (ix) is real-valued, whileK, 1 (ix) is complex vector-valued.
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It should be noted that Clifford algebra-valued orthogonal polynomial’irwith respect to

2
the weight function ex —% were already introduced {19] by Sommen. These so-called

radial Clifford—Hermite polynomial$H,, ,,, (x)}, >0 were constructed by means of the Cauchy—
Kowalewskaia extension.

They can be expressed in terms of the generalized Laguerre polynomials on the real line as
follows:

2
Hapm(x) = 2"n! LY “)(—%),
2

which corrects a result from [11, p. 70; 12, p. 309].
Consequently we have

Hopm (v/2x) = 2"t L2 P (1212,
Hopstm(V20) = 2'n! V2 x LT (1x ),

2
X
H2n+1,m(£)=2”ng)_cL’(lm/2)<__ ),

from which we obtain the following relation between the generalized Clifford—Hermite polyno-
mials and the radial Clifford—Hermite polynomials:

Ko (ix) = (—=1)'27" Hpy  (V2),
Kont1(ix) = (=1)'i2" V2 Hy, g0 (W/20).

5. The Clifford—Laguerre polynomials

In this section we construct Clifford algebra-valued polynomials which are orthogori&it on
with respect to the Clifford algebra-valued weight functidi(ix) P™ = exp(—ix)(ix)*P™;
o> —m.

The first factor in this weight function exp-ix) is defined by means of the real-analytic
function exp(—r) on the rear-axis (definition Section 3). The second factor)*, o > —m is
defined by

(ix)* = r°‘<P+ + exp(ina)P—)

(see[12, p. 349; 3, p. 14]).
Note that indeed:

(ix)* P+ = r“((P+)2 + exp(iaa)PP*) — ropt

and hence

W (ix) P = exp(—ix) (ix)*P" = exp(—ix)r* P+
=exp(—ix) Ptr* = exp(—r)r*Pt.
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By the change of variables— o +m — 1 > —1 andx — r in the orthogonality relation for
the generalized Laguerre polynomla!s,q )(x) In>o0, 0> —1, we get

+o0
/ exp(_r)ra+m—lL’(1a+m—l)(r)Lflolc+m—l)(r) dr
0

n+o+m-—1\.
= F(fx—l—m)( " )bn,n/.

In a similar way the explicit expression (3) and the recurrence relation for the generalized Laguerre
polynomials lead to

B " n+o+m—1\rk
LS[OH—m 1)(,,) — Z (_1)k< )F

par n—=k
and

AL V=2 + o 4+m—2— L V)= + 0+ m — 2L V).

The above results for the polynomials,(fm_l)(r)}n)o immediately give rise to the corre-

sponding results for the Clifford algebra-valued polynom{allé“) (ix)}n >0 orthogonal onR™
with respect to exp—ix)(ix)*P*, « > —m, which we call the Clifford—Laguerre polynomials.
They take the explicit form

@iy - N~ q (% m =1\ @)
Ln(w_o—Z(—l)( o )

and satisfy the recurrence relation
nLP(ix) = 2n+o+m —2—ix)L? (ix) — (n + o 4+m — 2L (ix).
The first Clifford—Laguerre polynomials are calculated to be:
Ly (ix) =1
LY (ix) = —ix + 2+ m,
(o) 1. 2 . 1
Ly (ix) = E(li) —(+m+1)ix+ 5(06 +m)(oe+m+1),

1 1 1
LY (1) = =500 + St m + D)2 = 5@+ m + D)+ m +2)(ix)

+é(oc+m)(oc+m + D+ m+2),

etc.

6. The half-range Clifford—Hermite polynomials

This section contains the construction of Clifford algebra-valued orthogonal polynomials in
R™ with respect to the Clifford algebra-valued weight functiditix) P™ = exp(—(ii)z)PJf;
they are called the half-range Clifford—Hermite polynomials.
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According to the general theory exposed in SecB@ this construction is based on orthogonal
polynomials or{0, +oo[ with respect to the weight function expr2)r™ 1.

In [1] a method is developed for calculating the coefficients in the recurrence relation for the
so-called half-range generalized Hermite polynomials on the redkhifie)}, >0,y > —1. These
are monic orthogonal polynomials on the interi@l+oo[ with respect to the weight function
x? exp(—x2),y > —1, thus satisfying

+00
/ x7exp(=x?)n ()], (x) dx =0,
0

wheneven # n'.

Note that the half-range generalized Hermite polynomials are related to the Freud polynomials
which are orthogonal oh— oo, +oo[ with respect to the weight functign|* exp(—x%) . These
Freud polynomials were studied by Fredd] and by Nevai [17].

The recurrence formula satisfied by these polynomials is

G 1(0) = (¢ = 20 (x) = B, _4(x), n>0 )
with
¢ () =0, Phx)=1.

The coefficients,, andf,, in their turn satisfy the recurrence relations:
2n—1+y

/))n + ﬁnfl + “5—1 = 2 ’ (5)
n+5 2 y2
“n“n—lﬂn = (TZ - ﬁn) - 1_6 (6)

with starting values

F(%Jrl)

——~2 and py=0.
741

()

The recurrence procedure for the coefficientsnd 5, appears to be straightforward. Giveg
andfg one calculateg; from (5) and then one uses (6) to calculateand so on.
Unfortunately, while the procedure is simple, the system is rather poorly conditioned. How this
comes about and what methods can be used to overcome this problem is explained in [1].
From (5) and (6) we obtain

g =
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etc.

Now the recurrence formula (4) allows us to compute recursively

db(x) =1,
r(3+1)
Pr(x)=x — =22,
' r(4h)
Y
Ph(x) =x7 — fz+Y) x

S L) B
) o ()

We observe that the half-range generalized Hermite polynomigls:)},, > o take the form

etc.

Pn(x) =D m@)x* withh, () =1 and () eR k=0,1,2,....n.
k=0

In agreement with the general construction theory of Se@i@nthe substitutions
y—>m—1 and x — ix,
yield the half-range Clifford—Hermite polynomials:

b, (ix) =Y hg(m — 1)(ix)*

k=0
with
hom—1)=1 and h(m—-1)eR k=0,1,2,...,n.
They satisfy the recurrence relation:
B (i) = (i = F) by (i) = By b1 (ix); >0
with

¢_1(ix) =0 and ¢g(ix) = 1.
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The coefficient$r, andﬁ,, in the recurrence relation can be calculated from:
2n+m— 2
> ,

s - n+ m—1 ~\2 (m — 1)2
OCnOCn—lﬁn = <—2 - ﬁn) T

7 7 ~2
ﬁn + ﬁn—l + xp—1 =

2 16
with starting values

(=)
%=——2 and f,=0.

()

A few examples are

Polix) =1,
N N )
P1(ix) =ix — ——25,
! r'(%)
m+1
#2000 = (0" - 5 21")('”+1) 7oix
(2 - () )
2
(=) .
+ 5 —E,

etc.

References

[1] J.S. Ball, Half-range generalized Hermite polynomials and the related Gaussian quadratures, SIAM J. Numer. Anal.
40 (6) (2003) 2311-2317.

[2] F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Pitman Publ., Boston-London-Melbourne, 1982.

[3] F. Brackx, H. De Schepper, Hilbert—Dirac operators in Clifford analysis, Chinese Ann. Math. 26B (1) (2005) 1-14.

[4] F. Brackx, N. De Schepper, F. Sommen, The Bi-axial Clifford—Hermite Continuous Wavelet Transform, J. Nat.
Geom. 24 (2003) 81-100.

[5] F.Brackx, N.De Schepper, F. Sommen, The Clifford—Gegenbauer polynomials and the associated continuous wavelet

transform, Integral Transforms Spec. Funct. 15 (5) (2004) 387-404.

[6] F. Brackx, N. De Schepper, F. Sommen, The Clifford—Laguerre continuous wavelet transform, Bull. Belg. Math.
Soc. - Simon Stevin 11 (2) (2004) 201-215.

[7] F. Brackx, N. De Schepper, F. Sommen, New multivariable polynomials and their associated continuous wavelet
transform in the framework of Clifford Analysis, Proceedings of the International Conference on Recent trends
of Applied Mathematics based on partial differential equations and complex analysis, Hanoi, 2004, submitted for
publication.

[8] F.Brackx, F. Sommen, Clifford—Hermite wavelets in Euclidean space, J. Fourier Anal. Appl. 6 (3) (2000) 299-310.

[9] F.Brackx, F. Sommen, The generalized Clifford—Hermite continuous wavelet transform, Adv. Appl. Clifford Algebras
11 (51) (2001) (Special Issue: Clifford Analysis, Proceedings of the Clifford Analysis Conference, Cetraro (ltaly),
October 1998, 219-231).



122 F. Brackx et al. / Journal of Approximation Theory 137 (2005) 108—122

[10] T.S. Chihara, An Introduction to Orthogonal Polynomials, Mathematics and its Applications, vol. 13, Gordon and
Breach, New York, 1978.

[11] J. Cnops, Orthogonal functions associated with the Dirac operator, Ph.D. Thesis, Ghent University (in Dutch).

[12] R. Delanghe, F. Sommen, V. Sk, Clifford Algebra and Spinor-Valued Functions, Kluwer Academic Publishers,
Dordrecht, 1992.

[13] H. Dette, Characterizations of generalized Hermite and sieved ultraspherical polynomials, Proc. Amer. Math. Soc.
348 (2) (1996).

[14] G. Freud, On the coefficients in the recursion formulae of orthogonal polynomials, Proc. Royal Irish Acad. Sci. Sect.
A 76 (1976) 1-6.

[15] W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics,
Springer, Berlin-Heidelberg-New York, 1966.

[16] A. Mclintosh, Clifford Algebras, Fourier Theory, Singular integrals and harmonic functions on Lipschitz domains,
in: J. Ryan (Ed.), Clifford Algebras in Analysis and Related Topics, CRC Press, Boca Raton, 1996, pp. 33-87.

[17] P. Nevai, Asymptotics for orthogonal polynomials associated Witr(exfa), SIAM J. Math. Anal. 15 (1984)
1177-1187.

[18] F. Sommen, Some connections between complex analysis and Clifford analysis, Complex Variables Theory Appl.
1(1982) 97-118.

[19] F. Sommen, Special functions in Clifford analysis and axial symmetry, J. Math. Anal. Appl. 130 (1) (1988)
110-133.

[20] G. Szegd, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, fourth ed., vol. 23,
American Mathematical Society, Providence RI, 1975.



